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Abstract. The issue of developing the model-based tools for monitoring, assessing, and forecasting safe natural and techno-
logical states of hydraulic structures, including slope structures of tailings dams, is one of the topical problems. The models repre-
sented in regulatory documents that establish requirements for the design, construction, and operation of hydraulic structures are 
primarily based on semi-empirical limit state models for calculating permissible stability parameters of dams. At the same time, mod-
ern international practice shows that in the design and operation of hydraulic structures, models based on the theory of deformable 
solid bodies combined with the finite element method are most commonly used. 

The purpose of this work is to develop a multiplicative mathematical model for determining the sensitivity of the dam’s stability 
function to variations in its structural parameters and the physical-mechanical properties of its components using the method of 
successive iterative approximation. 

In the course of the study, during model development, the approximation of the stability coefficient was carried out in a multipli-
cative form, where the components of the product are power functions, each depending only on a single parameter. The sensitivity to 
parameter variation was determined by the exponent indicators of these functions. The approximation coefficient, or multiplier, 
served as a free parameter that regulated the adequacy of the model parameters at the forecast point during the extrapolation pro-
cedure. The input data for obtaining the approximation model of the stability factor of slope structures were generated through a 
series of numerical experiments based on the geomechanical characteristics of a real object – the internal dam of a tailings storage 
facility. 

The scientific results of the study are as follows: the construction of a model for the stability safety factor based on the method 
of successive approximation (SAM), which made it possible not only to obtain an analytical form of the criterion in the neighbourhood 
of a point but also to extend the solution to the entire domain of the function, with errors not exceeding values acceptable for applied 
geomechanics problems; and the formulation of a hypothesis regarding the availability of a representation of functions in the form of 
a product of functions, each depending on a single parameter. It has been established that through the synthesis of the SAM and 
computer-based experimental studies, it is possible to obtain families of deterministic multiplicative mathematical models of various 
types of objects. 

The practical results of the study include a derived formula for determining a stability safety factor of slope systems in tailings 
dam structures, which allows for an approximate assessment of the risks of stability loss due to variations in parameter values. 

Keywords: numerical experiment, sensitivity theory, variation of the parameters, approximation of a function, approximate 
evaluation, low error, tailings storage facility, geomechanical stability of the dam.  

 
1. Introduction 

Storage facilities for wet enrichment or production waste (tailings, slag, ash, and 
sludge storage facilities) are hazardous, high-risk hydraulic structures. The main 
structural elements ensuring the safe operation of a tailings storage facility are the 
protective external and internal dams. The external dams ensure technogenic safety 
for the environment, while the internal dams primarily perform technological func-
tions [1]. The safety of a dam during its exploitation period is determined by the ge-
omechanical stability of the structure’s slope systems. Currently, within the opera-
tional and on-site monitoring systems of tailings storage facilities, there are practical-
ly no universally accepted methods for assessing and forecasting the stability condi-
tion of slope systems. Despite numerous recommendations in regulatory documents 
concerning the monitoring and operation of dams, there is no standard document that 
defines methods for calculating permissible loads and deformations in hydraulic 
structures. At the same time, the performance of technological, comprehensive moni-
toring activities and preliminary scientific and engineering assessments requires fast-
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acting, compact models for the real-time assessment of the condition of slope struc-
tures, which underlines the relevance and importance of this research direction. 

A milestone in conducting experimental research is choosing an appropriate 
mathematical model to describe the study process. There are relatively few types of 
analytical models: additive or multiplicative. The multiplicative form of the model is 
the most widely used. This form is the most convenient because the components of 
the product can be functions of various types. However, when selecting a multiplica-
tive model, there is one significant difficulty, i.e., the uncertainty of the approxima-
tion coefficient, or multiplier. Due to the unclear nature of its determination, this co-
efficient is sometimes referred to as the “coefficient of ignorance”. The adequacy of 
the model in representing the real process; and even more importantly, the adequacy 
of the parameters at the forecast point during extrapolation depends on its correct se-
lection. To determine the optimal operating modes of technical systems and to assess 
the risks of exceeding permissible performance limits, it is necessary to evaluate the 
influence of individual parameters on the quality function of their operation. 

Thus, for deterministic mathematical models (MM), the influence of parameters 
can be determined using the methods of sensitivity theory (ST). However, due to the 
considerable complexity of such analyses, sensitivity theory has not yet found wide 
application in engineering practice. We propose to apply the approximation of the 
quality criterion (instead of using ST directly) to determine sensitivity in technical 
applications. If the approximation of the selected criterion is performed in multiplica-
tive form, where the components of the product are power functions, each depending 
on a single parameter, then the exponents can be used to approximately determine the 
sensitivity of the criterion to the parameter variations. The greater the exponent, the 
stronger the influence of that parameter on the criterion. Thus, it becomes possible 
not only to obtain an approximate assessment of the parameters’ influence on the cri-
terion itself but also to make conclusions about the risk of the system exceeding its 
permissible limits. The successful experience of applying the successive approxima-
tion method (SAM) in the problems of applied mechanics makes it possible not only 
to obtain the analytical form of a criterion in the neighbourhood of a point but also to 
extend the solution across the entire domain of the function. The errors associated 
with such an extension generally do not exceed 5–7%, which is sufficient for most 
applied geomechanical problems. The accuracy of the criterion determination can be 
increased to the required level by narrowing the range of parameter variation, i.e., by 
limiting the intervals of parameter changes. 

 
2. Methods 

As a base method for calculating the geomechanical stability of slope systems in 
hydraulic structures, one of the classical limit equilibrium methods can be proposed, 
such as those developed by Fellenius, Janbu, Bishop, Fisenko, and others [2,3], or 
more precise methods based on the theory of deformable solid bodies [4-6]. Current-
ly, with the advancement of computational tools, classical limit equilibrium methods 
are increasingly being replaced by or combined with higher-accuracy methods. 



ISSN 3083-6271 (Print), ISSN 3083-628X (Online) Geo-Technical Mechanics. 2025. No.175 40 

In this study, we selected a base method of higher accuracy, combined with the 
finite element method (FEM). The effectiveness of such methods for dam stability 
calculations has been confirmed by numerous recent studies [7-10]. 

The mathematical model for the study should ensure a certain level of accuracy 
while approximating of the detailed large-scale models of complex systems. There-
fore, the idea emerged to construct a simplified multiplicative model for determining 
the safety factor of a slope system in a hydraulic structure. This model combines the 
theory of deformable solid bodies, solved using FEM, with the SAM and sensitivity 
theory. 

The goal of the work is to develop an analytical formula to determine the sensitiv-
ity of the dam’s stability function to the variations in its structural parameters and the 
physical-mechanical properties of its components, using SAM. 

 
3. Theoretical part 

One of the major challenges in studying complex systems is to obtain reliable 
models of parameters { }qxxx ,...,, 21  that describe the surface of performance char-

acteristics { }qyyy ,...,, 21 .. An active experiment implies the ability to actively influ-
ence the process being studied according to a pre-established plan. Active experi-
ments can be conducted on both physical and mathematical models. Most often, such 
models are represented as a black box [11] (see Fig. 1). 

 

 
 

Figure1 - Diagram of the black box operation 
 

To study the influence of the parameters of multifactor processes on the perfor-
mance indicators, multiplicative models of type (1) have been widely used 

 

( )
1

n

i i
i

Y f xα
=

= ∏ ,       

 
where Y is the outcome variable; ( )ii xf  are some functions; xi are process variables; 
n is dimension of the outcome variable space; and α  is “ignorance coefficient”. 

The advantages of such a model representation include a significant reduction in 
the number of experiments required for its development. Indeed, instead of conduct-
ing experiments on a mesh of parameters, experiments must be performed only along 
the lines formed by the intersection of the performance function surface with coordi-
nate planes parallel to the axes, passing through a certain point within the domain. 
Moreover, multifactorial models allow for the accumulation of information as the 
number of factors increases. This accumulation is achieved by changing and intro-
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ducing additional functions of the required factors. The previously collected infor-
mation in the form of single-factor dependencies remains in the process model. De-
spite these advantages, three significant drawbacks limit the widespread use of such 
model representations: 

1. The class of product functions must be defined based on the information avail-
able before conducting the experiment. 

2. The procedure for determining coefficient α , often referred to as the “coeffi-
cient of ignorance,” remains undefined. It is most commonly found experimentally, 
based on the equality of the resulting characteristic with a known value.  

3. The error evaluation of the presented model is performed only by comparing it 
with the experimental data and cannot be predicted in advance. This, in turn, leads to 
uncertainty regarding the step sizes for the parameter variations, and thus the number 
of experiments required. 

Attempts to determine the “coefficient of ignorance” using the proposed formulas 
have been unsuccessful [12-15]. It became clear that, for the correct determination of 
this coefficient, it is necessary not to assign the form of the formula in advance, but to 
derive its expression through the application of mathematical methods. 

The importance of such representations of experimental data arises from the fact 
that experiments can also include computational experiments. For example, the avail-
ability of software packages with advanced user interfaces based on the FEM and 
boundary element methods (BEM) has significantly expanded the range of practical 
problems that can be modelled and analysed. The results of studies on the processes 
using numerical methods often provide functions of the required parameters, present-
ed in a tabular form. Based on these tables, graphical dependencies of the function on 
any parameter are constructed. However, the problem of assessing the impact of pa-
rameters on the characteristics of the stress-strain state cannot be solved within the 
scope of these software packages and remains a separate and complex problem. 

For deterministic MM that are described by systems of differential equations 
(DEs) and have analytical solutions, the influence of parameters can be determined 
using sensitivity theory (ST) methods [12]. The part of ST related to studying the ef-
fect of parameter changes on the system’s characteristics is commonly called para-
metric sensitivity theory. In the sequel, the term sensitivity will refer to parametric 
sensitivity [12]. 

Let's сonsider the process described by a system of differential equations. The 
search for a complex control function proceeded according to the following scheme: 

1) solve the system of differential equations and select the necessary solutions us-
ing a specific criterion;  

2) investigate the continuity and stability of the solutions with respect to the pa-
rameter variations;  

3) obtain the sensitivity equations (a generalized derivative of the selected solu-
tion to the initial system of differential equations generates the system of sensitivity 
equations); 

4) find the solutions (the sensitivity functions) of the sensitivity equations; 
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5) study the stability of the sensitivity functions with respect to the parameter var-
iations; and 

6) select from the set of sensitivity functions the ones that ensure the correct con-
trol of the system.  

The represented scheme for selecting a control system for the process is not sim-
ple and requires significant effort, qualifications, and time to implement. Given the 
significant advantages of the identified control systems, incremental application of 
ST has expanded in the field of technical applications, including tasks related to the 
mechanics of continuous media. 

SAM allows for the approximate determination not only of the analytical form of 
the model but also for assessing the response speed of the selected criterion to the 
parameter variations. This enables an approximate evaluation of the influence of pro-
cess parameters [18,19]. 

For example, a comparison of the results from solving a classical problem of de-
termining the stress-strain state near a circular cross-section tunnel reinforced with 
anchors using FEM in a mass of rock showed promising results [20]. 

The use of SAM for various problems of geotechnical mechanics has demonstrat-
ed its effectiveness in obtaining an approximate representation of functions in the 
neighbourhood of a fixed point within the domain [6]. However, as practical experi-
ence with applying SAM to mechanical problems shows, the required functions ex-
hibit sufficient accuracy for engineering calculations across the entire parameter do-
main. The relative error increases as the solution approaches the boundary of the pa-
rameter definition range, but for most problems, it did not exceed 10%, which is en-
tirely acceptable for geotechnical engineering calculations. Solutions of the problems 
of geotechnical mechanics using FEM methods are smooth, as well as the functions 
that describe the stress state of the object. 

Thus, the need arose to expand the application of SAM and attempt to use it for 
modelling the stress-strain state in FEM-based problems of geotechnical mechanics. 

The object of study is the tailings dam of heterogeneous construction (comprising 
five horizontal layers of rock with different physical-mechanical properties), asym-
metric shape (with dam slopes varying from gentle to steep), and subjected to hydro-
static loading [21] (see Figure 2). 

The task is solved in the context of plane strain formulation [4, 5]. 
Successful use of SAM in the problems of applied mechanics [22-24] demon-

strates that, although the function is determined around a fixed point, solutions to 
practical problems can be extended across the entire domain of the function. The er-
rors in such a representation increase as the solution approaches the boundary of the 
domain, but they do not exceed 5–7%. This level of accuracy is satisfactory for engi-
neering calculations in geotechnical mechanics, as the input data for these calcula-
tions are determined with the same level of precision. The accuracy can be increased 
to the necessary level by narrowing the domain of parameter variation. Successful 
application of SAM in practical applications has allowed for the generalization of the 
research results and the formulation of a hypothesis about the availability of such a 
representation for a wider range of problems. 
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αs is slope angle, degree; a is crest width, m; b is base width, m; h is dam height, m; 
Hwl= 7 is water level on the left, m; Hwr= 4 is water level on the right, m 

 
Figure 2 - Scheme of the object model and its parameters 

 
HYPOTHESIS: Let there exist scalar function 1 2 nF(X)= F(x ,x ,...,x )  that is 

bounded, well-defined, and continuous in a closed region D  of scalar field P. Then, 
for ( ); 0M D U M Dεε∀ ∈ ∀ ≥ ∃ ⊂  in the neighbourhood of point 

( )0 0 0 0
0 1 2 3, , ,... nM x x x x , function F(X)can be represented in the form: 

 
( ) ( ) ( )0 0,F X X M U Mεφ ε− ≤ ∀ ∈  ,    (1) 

 
Where ( )0MUε  is neighbourhood of the function; 

( ) ( ) ( )
1 1

n n

i i i i i
i i

X x g xφ α ϕ α
= =

= =∏ ∏ ,    (2) 

 
where α is coefficient of approximation; ( )ii xg  is functions of approximation for func-
tions ( ) ( ) ( ) ( )1 1 2 2 3 3, , ... n nx x x xϕ ϕ ϕ ϕ ; and iα  is coefficients of approximation for 
functions ( )i ig x . Functions iϕ are defined as follows:  
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and α is coefficient of approximation determined according to the formula: 
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( )
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As evidenced by the experience of using the indicated approach of representing 

function ( ) ( )nxxxxFXF ,...,, 321=  in the neighbourhood of point ( )00
3

0
2

0
10 ,...,, nxxxxM , for a 

significant number of problems in geotechnical mechanics, it provides sufficient ac-
curacy for engineering calculations over the entire domain of D . 

The algorithm for applying SAM can be presented as a sequence of the following 
steps [13] (see Fig. 2): 

 
 

………………....…….. 

 

Study  
object 

 

x2i φ2i =>{ x2i; φ2i}=> g2 

 

x1i φ1i =>{ x1i; φ1i}=> g1 

 

xni φni =>{ xni; φni}=> gn 

x2
0… xn

0 

x1
0, x3

0 …xn
0 

x1
0…xn-1

0 
………………....……………………………….. 

 
 

Figure 3 - Explanation of the algorithm application 
 

Step 1. Select a point from the domain of the function 
 

( ) DMxxxxMM n ∈= ,,...,,, 00
3

0
2

0
1 ; ( )0 0 0 0

0 1 2 3, , ,..., nM M x x x x= ,  (5) 

 
where n is number of variables under consideration. 

The selection depends on the qualifications of the researcher, or, in case of diffi-
culties with its selection, it is chosen using a simplified procedure at the centre of the 
definition intervals. 

Step 2. Define functions ( ) ( ) ( )1 1 2 2, ,... n nx x xϕ ϕ ϕ : ( ) ( )0 0
1 1 1 2, ,..., nx F x x xϕ = , and 

( ) ( )0 0 0
2 2 1 2 3, , ,... nx F x x x xϕ = … ( ) ( )0 0

1 2, ,...n n nx F x x xϕ = . 

In other words, for function ( ) ( )0 0 0
1 1 1 2 3, , ,..., nx F x x x xϕ = , only parameter x1 is 

variable, and all other coordinated or parameters remain constant, i.e., fixed at point 

( )0 0 0
0 1 2 3, , ,..., nM M x x x x= . It is similar for all functions ( )1,...,i nx xϕ , where n is 

number of variables under consideration. 
Step 3. Determine the form of functions ( ) ( ) ( ) ( )1 1 2 2 3 3, , ,... n ng x g x g x g x , which 

are approximations for functions ( )i ixϕ . 
Functions ( ) ( ) ( ) ( )1 1 2 2 3 3, , ,... n ng x g x g x g x  belong to the class of elementary 

functions. 
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Step 4. Determine ( )ii xϕ  according to the hypothesis, namely: 
 

( ) ( )
1

n

i i
i

X g xφ α
=

= ∏ ,      (6) 

 
i.e., according to the formula (6): 
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where 1 3, ,... nα α α are coefficients of approximations. 

Step 5. Define the function in the neighbourhood of point M0 from the equality  
 

( ) ( )1 2 3 1 2 3, , ,... , , ,...n nF x x x x x x x xφ≈ .   (8) 
 

Thus, we obtain the required representation of the function   
 

( ) ( ) ( ) ( ) ( )nnnnn xgxgxgxxxxxxxxF ...,...,,,,...,,, 2211321321 α=ϕ≈ . (9) 
 

The location of point ( )0 0 0
0 1 2, ,..., ,nM M x x x M D= ∈ in the domain significantly 

depends on its topology and therefore affects the way it is represented. The selection 
of the point in the domain depends on prior knowledge of its characteristics and qual-
ifications of the researcher. In case of complex functions and no prior knowledge 
about the behaviour of the response function, it is suggested to select the point in the 
centre of the domain, i.e., to determine the coordinates using the formula: 

 
0

2
i i

i
b ax −

= ,       (10) 

 
where ai and bi represent the start and end of the interval of the parameter xi variation. 
Thus, we find the average value within the interval. 

For our case, the intervals of variation are given in the Table 1.  
The problem of calculating the stability coefficients of a dam subjected to hydro-

static pressure on its slopes is an important task in the field of land reclamation and 
water storage. To solve such problems, there are specialized software products, most 
of which are based on FEM. Without such mathematical tools, it is almost impossible 
to calculate the stability coefficients. To perform operational analysis of the dam’s 
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state, it would be ideal to estimate the risks of stability loss due to parameter varia-
tions and determine their effect on the stability coefficient Kst. 

 
Table 1 - Intervals of value variations  

Variables 
Xi 

Slope 
angle 

αs, 
degree 

Crest 
width 

a, 
m 

Base 
width 

b, 
m 

Dam 
height 

h, 
m 

Unit 
weight of 
a layer γ, 

kN/m3 

Angle of in-
ternal layer 
friction θ, 

degree 

Cohesion of 
the layer 

material c, 
kPa 

Modulus of 
elasticity 

E, 
kPa 

Minimum 
value ai 15 5 50 10 15 11.4 5.4 7800 

Maximum 
value bi 

60 50 140 46 21.3 27.6 51.2 25400 

M0 37.5 27.5 95 28 18.15 19.15 28.3 16600 
 

This problem can be solved using the SAM described earlier. For convenience, 
we will use the following algorithm. 

The first step in the algorithm is to select a base point around which, as a result of 
successive actions in the algorithm, the analytical formula will be derived. This for-
mula relates the stability coefficient as a function of the parameters, which character-
ize both the geometry of the dam and the other parameters needed to calculate its val-
ue. Figure 2 shows the main structural elements and parameters of the model describ-
ing the dam. 

The parameters that define the magnitude of the stability coefficient as a function 
of other parameters and characterize the base point are represented as follows: 
 

( )0 0 0 0 0 0 0 0, , , , , , ,st sK K a b h c Eα γ θ= .   (11) 

 
Values of the output data are shown in Table 2. 
 

Table 2 - Values of the output data of the base point 
Parameters αs

0
 a0

 b0
 h0

 γ0
 θ0

 c0
 E0

 

Values 37.5 27.5 95 28 18.15 19.5 28.3 16600 
 

Taking into account that the model under study consists of 5 layers of rocks with 
different properties, the values of γ0, θ0, c0, and E0 were determined as the arithmetic 
mean of the corresponding physicomechanical properties of the lithological compo-
nents of the rock mass (see Fig. 2): 
 

0 01 2 3 4 5 1 2 3 4 5

0 01 2 3 4 5 1 2 3 4 5

; ;
5 5

;
5 5

c c c c c E E E E Ec E

γ γ γ γ γ θ θ θ θ θγ θ+ + + + + + + +
= =

+ + + + + + + +
= =

   (12) 
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The stability coefficient of the dam was calculated using specialized software 
packages based on the finite element method. By conducting a series of calculations 
of the stability reserve coefficients of the dam slopes with variations in all parame-
ters, a set of results was obtained, which subsequently served as input for the process 
of successive approximation. Tables 3 and 4 show the most representative examples 
of calculation results Kst from the variation of the geometric parameter of dam height 
h and the geomechanical parameter of cohesion с. The influence of variations in other 
parameters of the object under study has a similar structure. 

 
Table 3 Results of calculating the change in the safety factor of the dam slopes depending on the 

variation of the dam height 
Nv 1 2 3 4 5 6 7 8 9 10 
h, m 10 14 18 22 26 30 34 38 42 46 

stLK  2.24 1.57 1.25 1.11 0.97 0.81 0.67 0.61 0.6 0.58 

stRK  3.89 2.49 1.41 1.12 0.98 0.79 0.63 0.54 0.43 0.36 
 

Table 4. Results of calculating the change in the safety factor of the dam slopes depending on the 
variation of the material cohesion of the dam layers c, kPa. 

 
Nv c1 c2 c3 c4 c5 c0 stLK  

1 5 5 10 5 2 5.4 1.21 
2 8.3333 8.8888 15.5555 15.5555 4.1111 10.4888 1.47 
3 11.6666 12.7776 21.111 26.1111 6.2222 15.5777 1.72 
4 14.9999 16.6664 26.6665 36.6667 8.3333 20.6666 1.97 
5 18.3332 20.5552 32.222 47.2223 10.4444 25.7554 2.23 
6 21.6665 24.444 37.7775 57.7779 12.5555 30.8443 2.46 
7 24.9998 28.3328 43.333 68.3335 14.6666 35.9331 2.71 
8 28.3331 32.2216 48.8885 78.8891 16.7777 41.022 2.95 
9 31.6664 36.1104 54.444 89.4447 18.8888 46.1109 3.21 

10 34.9997 39.9992 59.9995 100.0003 20.9999 51.1997 3.46 
 

The symbols used in Tables 3 and 4 are as follows: Nv is the variant number;  
stLK  and stRK  are safety factors for the left and right slopes, respectively; and 

1 5,...,c c  are the cohesion values for the respective layers of the rock mass. 
 

4. Results and discussion 
Perform the MM procedure using the selected parameters and following the hy-

pothesis procedure.  
Step 1. Obtain a set of function values using the set of formulas (3) 
( ) ( ) ( )1 1 2 2, .... n nx x xϕ ϕ ϕ . 

In other words, for function ( ) ( )0 0 0
1 1 1 2 3, , ,..., nx F x x x xϕ = , the only variable is pa-

rameter x1, while all other coordinates or parameters remain constant, i.e., they are at 
point ( )0 0 0

0 1 2 3, , ,..., nM M x x x x= . It is similar for all functions 
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( ) ( ) ( )2 2 3 3, ... n nx x xϕ ϕ ϕ , where n is the number of parameters being considered. The 
mentioned data set is obtained using FEM with the step 2 recommendations of the 
hypothesis. 

( ) ( )
( ) ( )

( ) ( )

0 0 0
1 1 1 2 3

0 0 0
2 2 1 2 3

0 0 0
1 2 3

, , ,..., ;

, , ,..., ;

...

, , ,..., .

n

n

n n n

x F x x x x

x F x x x x

x F x x x x

ϕ

ϕ

ϕ

 =

 =




=

   (13) 

 
Step 2. This step is considered completed since we already have functions 
( )i ixϕ . 
Functions φ1(αs),φ2(a),φ3(b),φ4(h),φ5(γ),φ6(θ),φ7(c), and φ8(E) were determined 

from the variations of the dependent parameters as approximation formulas to calcu-
late the safety factor Kst 
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  (14) 

 
Step 3. Set  functions ( ) ( ) ( ) ( )1 1 2 2 3 3, , ,... n ng x g x g x g x , being the approxima-

tions for function ( )i ixϕ , as power functions. 
It should be noted that representing the approximating function as a power func-

tion can be justified by the small range of the original function, the use of the root-
mean-square deviation procedure, and the small errors in the absolute values of the 
original function. 
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(15) 

 
For the representative parameter of dam height h, an example of a combined 

graph of Kst approximation using one-dimensional functions ( )4 4xϕ  and ( )4 4g x  is 
shown in Fig. 4. 

 

 
 

Fig.4 Combined graph of approximation stK  by one-dimensional functions  

( )4 4xϕ and ( )4 4g x for variable h 
 

Step 4. Define ( )Хφ according to step 1: 

( ) ( )
1

n

i i i
i

x g xφ α
=

= ∏  
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or 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7 8, , , , , , ,s sa b h c e g g a g b g h g g g c g Eφ α γ θ α α γ θ=  
 
or 

( )
0.12087 0.48 0.5328 0.0074

0.61557 0.0054 0.92166 0.6685, , , , , , ,s
s

b c Ea b h c e
a h
θφ α γ θ α

α γ
= ,  (16) 

 
whereα  is coefficient of approximation. 

Step 5. Determine the function in the neighbourhood of base point M0 from the 
approximate equation: 

 
( ) ( )

0.12087 0.48 0.5328 0.0074

0.61557 0.0054 0.92166 0.6685

, , , , , , , , , , , , , ,st s s

s

K a b h c E a b h c E

b c E
a h

α γ θ φ α γ θ

θα
α γ

≈ =

=
 , (17) 

 
Finally, obtain the required representation of Kst in in the following form: 
 

( )
0.12087 0.48 0.5328 0.0074

0.61557 0.0054 0.92166 0.6685, , , , , , ,st s
s

b c EK a b h c E
a h
θφ α γ θ α

α γ
= = , (18) 

 
where α  is coefficient of approximation, determined according to the formula: 
 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8

, , , , , , ,sK a b h c E

g g a g b g h g g g c g E

α γ θ
α

α γ θ
=  (19) 

 
for the selected base point α =30.7622. 

It should be noted that the complexity of the problem under consideration re-
quired a slight correction in the determination of the approximation coefficient (19). 
This allowed for improving the accuracy in obtaining the values of the stability coef-
ficient of dam faces.  

A check for relative errors of the obtained formulas (19) in comparison with the 
corresponding formulas presented in (15) showed that their magnitude does not ex-
ceed 5%. 
Summary. 

1. The studies conducted in determining the approximation coefficient α demon-
strated that the proposed formula for its determination (4) does not always provide 
values that ensure minimal relative errors in the function determination. 
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2. Specifically difficulties in its determination arise when considering multi-
parameter problems. The task of determining the safety factor of the dam is exactly 
this type of problem. It can be assumed that the topology of the functional surface has 
a folded nature, i.e., it is far from smooth. Likely, this circumstance caused the diffi-
culties in determining the approximation coefficient value. 

 
5. Conclusions 

1. The results demonstrate the effectiveness of the proposed approach SAM to de-
termining MM in the form of analytical formulas.  

2. The obtained formula for determining the stability coefficient using power 
functions allows for a visual and approximate evaluation of the impact of variations 
in specific parameters on its value. 

3. The proposed formula for the stability coefficient of the dam slopes allows for 
approximate assessment of the risks of the structure’s instability due to certain 
changes in the parameter values.  

4. It has been established that mathematical models can be obtained from a uni-
fied perspective through experimental research. Experimental research is understood 
as both physical modelling and numerical modelling.  

5. Any study that can be represented as a “black box” can use the proposed hy-
pothesis to obtain mathematical models in analytical form.  
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ПОБУДОВА МУЛЬТИПЛІКАТИВНОЇ МАТЕМАТИЧНОЇ МОДЕЛІ ГЕОМЕХАНІЧНОЇ СТІЙКОСТІ ДАМБ 
ХВОСТОСХОВИЩА МЕТОДОМ ПОСЛІДОВНОЇ АПРОКСИМАЦІЇ 
Бабій К., Ларіонов Г., Рябко А., Говоруха О., Желязов Т. 

Анотація. Питання створення модельних інструментів моніторингу, оцінки та прогнозу безпечного природно-
техногенного стану гідротехнічних споруд до яких належать укісні споруди хвостосховищ (дамби) є однією з актуальних 
проблем. Представлені у нормативних документах, що встановлюють вимоги до проектування, будівництва та експлуатації 
гідротехнічних споруд, моделі розрахунку допустимих параметрів стійкості дамб базуються насамперед на напівемпіричних 
моделях граничного стану. У той же час сучасний світовий досвід показує, що у практиці проектування та експлуатації гідро-
технічних споруд найчастіше використовують моделі теорії твердого деформованого тіла у поєднанні з методом скінчених 
елементів.  
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Метою роботи є побудова мультиплікативної математичної моделі для визначення чутливості функції стійкості дамби 

від варіації її конструктивних параметрів та фізико-механічних властивостей складових з використанням методу послідовної 
апроксимації. 

У процесі досліджень при розробці моделі апроксимація коефіцієнту стійкості здійснювалась у мультиплікативному ви-
гляді де складові добутку є степеневі функції, кожна з яких залежить лише від одного параметру, чутливість його до варіації 
параметрів встановлювалась за показниками степеню функцій, коефіцієнт апроксимації або мультиплікатор виконував роль 
вільного параметру, що регулював адекватність параметрів точки прогнозу за виконання процедури екстраполяції. Вхідні 
дані для отримання моделі апроксимації коефіцієнту запасу стійкості укісних споруд створювались серією чисельних експе-
риментів на основі геомеханічних характеристик реального об’єкту - внутрішньої дамби хвостосховища. 

Науковими результатами дослідження є: побудова моделі коефіцієнту запасу стійкості на базі методу послідовної апро-
ксимації (МПА), що дозволило не тільки отримати аналітичний вигляд критерію у околі точки, але й продовжити рішення на 
всю область визначення функції, з похибками, що не перевищують величин достатніх для прикладних задач геомеханіки; 
сформовану гіпотезу про існування представлення функцій у вигляді добутку функцій, кожна з яких залежить від одного 
параметра. Встановлено, що за допомогою синтезу МПА та комп’ютерних експериментальних досліджень можна отримувати 
сімейства детермінованих мультиплікативних математичних моделей об’єктів різних типів.  

До практичних результатів дослідження належить отримана формула для визначення коефіцієнту запасу стійкості укіс-
них систем дамб хвостосховищ, яка дозволяє наближено оцінювати ризики втрати стійкості споруди від зміни значень пара-
метрів. 

Ключові слова: чисельний експеримент, теорія чутливості, варіація параметрів, апроксимація функції, наближена оці-
нка, низька похибка, хвостосховище, геомеханічна стійкість дамби. 
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